Math 560

Implicit Differentiation

1. Use implicit ddifferentiation to find $\frac{d y}{d x}$ for each curve.
(a) $x^{3}+y^{3}=9$

Solution:

$$
\begin{aligned}
3 x^{2}+3 y^{2} y^{\prime} & =0 \\
y^{\prime} & =\frac{-3 x^{2}}{3 y^{2}} \\
& =-\frac{x^{2}}{y^{2}}
\end{aligned}
$$

(b) $y^{2}-x^{2}=x^{2} y^{2}$

Solution:

$$
\begin{aligned}
2 y y^{\prime}-2 x & =x^{2}\left(2 y y^{\prime}\right)+y^{2}(2 x) \\
2 y y^{\prime}-2 x^{2} y y^{\prime} & =2 x y^{2}+2 x \\
y^{\prime} & =\frac{2 x y^{2}+2 x}{2 y-2 x^{2} y} \\
& =\frac{x y^{2}+x}{y-x^{2} y}
\end{aligned}
$$

2. The following problems refer the the implicitly defined functions $x^{2}+x y+y^{2}=1$ and $x^{2}-x y+y^{2}=1$ whose graphs are shown above.
(a) Determine $\frac{d y}{d x}$ for each curve.

Solution: To differentiate $x^{2}+x y+y^{2}=1$ we have

$$
\begin{aligned}
2 x+x y^{\prime}+y+2 y y^{\prime} & =0 \\
y^{\prime} & =\frac{-2 x-y}{x+2 y}
\end{aligned}
$$

Similarly, the derivative of $x^{2}-x y+y^{2}=1$ is $y^{\prime}=\frac{y-2 x}{2 y-x}$.
(b) Decide which curve is which. (Hint: One way is to compare the derivatives at a common point, such as $(0,1)$.)

Solution: $x^{2}-x y+y^{2}=1$ is the ellipse whose major axis is rotated $\frac{\pi}{4}$ from standard postion.
(c) Determine all the points at which the tangent line is horizontal.

Solution: For $x^{2}+x y+y^{2}=1$, the tangent line to the ellipse is horizontal when $-2 x-y=0$ or $-2 x=y$. To find the x-coordinate we need to plug this into the original, $x^{2}+x y+y^{2}=1$. So,

$$
\begin{aligned}
x^{2}+x(-2 x)+(-2 x)^{2} & =1 \\
x^{2}-2 x^{2}+4 x^{2} & =1 \\
3 x^{2} & =1 \\
x & = \pm \frac{1}{\sqrt{3}}
\end{aligned}
$$

To get the y-coordinate, we can plug both of these value into the numerator of the derivative. So, for $x=\frac{1}{\sqrt{3}}$ we have, $y=-2\left(\frac{1}{\sqrt{3}}\right)=\frac{-2}{\sqrt{3}}$. And for $x=-\frac{1}{\sqrt{3}}$ we have, $y=-2\left(-\frac{1}{\sqrt{3}}\right)=\frac{2}{\sqrt{3}}$. Therefore, the points where the tangent line are horizontal are $\left(-\frac{1}{\sqrt{3}}, \frac{2}{\sqrt{3}}\right)$ and $\left(\frac{1}{\sqrt{3}},-\frac{2}{\sqrt{3}}\right)$
We could go through this process again for the other ellipse, $x^{2}-x y+y^{2}=1$, but let's exploit the fact that we have symmetry.
So, the points where the tangent is horizontal to the ellipse $x^{2}-x y+y^{2}=1$ are $\left(-\frac{1}{\sqrt{3}}, \frac{-2}{\sqrt{3}}\right)$ and $\left(\frac{1}{\sqrt{3}}, \frac{2}{\sqrt{3}}\right)$
(d) Determine all the points at which the tangent line is vertical.

Solution: For $x^{2}+x y+y^{2}=1$, the tangent line to the ellipse is horizontal when $x+2 y=0$ or $x=-2 y$. To find the y-coordinate we need to plug this into the original, $x^{2}+x y+y^{2}=1$. So,

$$
\begin{aligned}
(-2 y)^{2}+(-2 y) y+y^{2} & =1 \\
4 y^{2}-2 y^{2}+y^{2} & =1 \\
3 y^{2} & =1 \\
y & = \pm \frac{1}{\sqrt{3}}
\end{aligned}
$$

To get the x-coordinate, we can plug both of these value into the numerator of the
derivative because we want the x that makes the numerator zero. So, for $y=\frac{1}{\sqrt{3}}$ we have, $x=-2\left(\frac{1}{\sqrt{3}}\right)=\frac{-2}{\sqrt{3}}$. And for $y=-\frac{1}{\sqrt{3}}$ we have, $x=-2\left(-\frac{1}{\sqrt{3}}\right)=\frac{2}{\sqrt{3}}$.
We could go through this process again for the other ellipse, $x^{2}-x y+y^{2}=1$, but let's exploit the fact that we have symmetry.
So, the points where the tangent is horizontal to the ellipse $x^{2}-x y+y^{2}=1$ are $\left(\frac{-2}{\sqrt{3}},-\frac{1}{\sqrt{3}}\right)$ and $\left(\frac{2}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$.
(e) Draw the line $y=x$ on the axis above. Use derivatives to show that this line intersects both curves perpendicularly.

Solution:

For $x^{2}-x y+y^{2}=1$, The line $y=x$ intersects the ellipse at $(1,1)$ and $(-1,-1)$. Plugging these points into the derivative give $y^{\prime}=-1$.
For $x^{2}+x y+y^{2}=1$. We need to find the point of intersection. So, substituting $y=x$, we have

$$
\begin{aligned}
x^{2}+x \cdot x+x^{2} & =1 \\
3 x^{2} & =1 \\
x & = \pm \frac{1}{\sqrt{3}}
\end{aligned}
$$

So, the points of intersection are $\left(\frac{1}{\sqrt{3}}, \frac{-2}{\sqrt{3}}\right)$ and $\left(\frac{-1}{\sqrt{3}}, \frac{2}{\sqrt{3}}\right)$.
Then the derivative at these points is -1 .

