Math 560

1. Use the function below to answer the following questions.

$$
f(x)= \begin{cases}x^{2}-1 & \text { when }-1 \leq x<0 \\ 2 x & \text { when } 0<x<1 \\ 1 & \text { when } x=0 \\ -2 x+4 & \text { when } 1<x<2 \\ 0 & \text { when } 2<x<3\end{cases}
$$

(a) Determine the left and right hand limits of f at $x=-1,0,1,2$, and 3 .

Solution:

x	left-hand limit	right-hand limit
-1	DNE	0
0	-1	0
1	2	2
2	0	0
3	0	DNE

(b) Discuss the continuity of f. Identify the types of discontinuities that exist, if any.

Solution: Not continuous at $x=-1$ and 3 because $\lim _{x \rightarrow-1} f(x)=\lim _{x \rightarrow 3} f(x)$ DNE because f is not defined for $x<-1$ and $3<x$. Also, f is not continuous at $x=0$ because $\lim _{x \rightarrow 0} f(x)$ DNE. Also, f is not continuous at $x=1$ and 2 because $f(1)$ and $f(2)$ are not defined.
(c) What values of $f(1)$ and $f(2)$ should you assign to make $f(x)$ continuous at $x=1$ and $x=2$?

Solution: $f(1)=2$ and $f(2)=0$
(d) Is is possible to make f continuous at $x=0$? If so, how?

Solution: No because it is a jump discontinuity.
(e) Is is possible to make f continuous at $x=3$? If so, how?

Solution: Yes. Define $f(x)=0$ for $3 \leq x$.
2. Sketch a graph of a function with all the following characteristics.

$$
\begin{array}{cl}
\lim _{x \rightarrow-\infty} f(x)=-2 \quad & \lim _{x \rightarrow-1^{-}} f(x)=+\infty \quad \lim _{x \rightarrow-1^{+}} f(x)=+\infty \quad f(-1)=0 \\
& \lim _{x \rightarrow 2^{-}} f(x)=2 \quad \lim _{x \rightarrow 2^{+}} f(x)=-2
\end{array}
$$

$f(x)$ is continuous from the right at $x=2$
$f(x)$ has roots at $x=-1,-3,3$, and 4 only

$$
\lim _{x \rightarrow+\infty} f(x)=-\infty
$$

3. Determine $\lim _{x \rightarrow \infty} \frac{\sqrt{1+4 x^{2}}}{4+x}$

Solution:

$$
\lim _{x \rightarrow \infty} \frac{\sqrt{1+4 x^{2}}}{4+x}=\lim _{x \rightarrow \infty} \frac{\sqrt{\left(1 / x^{2}\right)+4}}{(4 / x)+1}=\frac{\sqrt{0+4}}{0+1}=2
$$

4. Determine the equation of the tangent line to $y=\frac{1}{\sqrt{x}}$ at $(1,1)$

Solution:

$$
\begin{aligned}
\text { slope } & =\lim _{x \rightarrow 1} \frac{1 / \sqrt{x}-1}{x-1}=\lim _{x \rightarrow-1} \frac{-(\sqrt{x}-1)}{\sqrt{x}(\sqrt{x}-1)(\sqrt{x}+1)} \\
& =\lim _{x \rightarrow 1} \frac{-1}{\sqrt{x}(\sqrt{x}+1)}=-\frac{1}{2}
\end{aligned}
$$

So, the equation of the tangent line is $y-1=-\frac{1}{2}(x-1)$.

