Math 560

Limits using the Limit Laws

§2. 3
Determine the following limits or indicate that the limit does not exist.

1. $\lim _{x \rightarrow-1} \frac{x^{3}+1}{x+1}$
2. $\lim _{x \rightarrow 2} \frac{2-x}{x^{2}-4}$

Solution: $\lim _{x \rightarrow-1} \frac{x^{3}+1}{x+1}=3$
Solution: $\lim _{x \rightarrow 2} \frac{2-x}{x^{2}-4}=-\frac{1}{4}$
3. $\lim _{x \rightarrow 4} \frac{\sqrt{x+5}-3}{x-4}$
4. $\lim _{x \rightarrow \frac{\pi}{2}} \frac{\cos x}{\cot x}$

Solution: $\lim _{x \rightarrow 4} \frac{\sqrt{x+5}-3}{x-4}=\frac{1}{6}$
Solution: $\lim _{x \rightarrow \frac{\pi}{2}} \frac{\cos x}{\cot x}=1$
5. $\lim _{x \rightarrow 2} \frac{|x-2|}{x-2}$
6. $\lim _{x \rightarrow 0} \frac{\sqrt{x+5}-\sqrt{5}}{x}$

Solution: DNE. The limit from the left is not the same as the limit from the right.

Solution: $\lim _{x \rightarrow 0} \frac{\sqrt{x+5}-\sqrt{5}}{x}=\frac{1}{2 \sqrt{5}}$
7. Using the Limit Laws (i.e. algebraically), determine the limits of \#1 and \#3.

Solution:

$$
\begin{array}{rlrl}
\lim _{x \rightarrow-1} \frac{x^{3}+1}{x+1}=\lim _{x \rightarrow-1} \frac{(x+1)\left(x^{2}-x+1\right)}{x+1} & \lim _{x \rightarrow 4} \frac{\sqrt{x+5}-3}{x-4} & =\lim _{x \rightarrow 4} \frac{\sqrt{x+5}-3}{x-4} \cdot \frac{\sqrt{x+5}+3}{\sqrt{x+5}+3} \\
=\lim _{x \rightarrow-1}\left(x^{2}-x+1\right) \\
& =(-1)^{2}-(-1)+1=3 & =\lim _{x \rightarrow 4} \frac{x+5-9}{(x-4)(\sqrt{x+5}+3)} \\
& =\lim _{x \rightarrow 4} \frac{x-4}{(x-4)(\sqrt{x+5}+3)} \\
& =\lim _{x \rightarrow 4} \frac{1}{\sqrt{x+5}+3} \\
& =\frac{1}{3+3}=\frac{1}{6}
\end{array}
$$

8. Use the Squeeze Theorem to determine $\lim _{x \rightarrow 0} x \cos \frac{1}{x}$.

Solution: Because $-x \leq x \cos \frac{1}{x} \leq x$ and $\lim _{x \rightarrow 0}-x=\lim _{x \rightarrow 0} x=0$ it follows by the Squeeze
Theorem that $\lim _{x \rightarrow 0} x \cos \frac{1}{x}=0$
9. Determine the constant k such that the following limit exists.

$$
\lim _{x \rightarrow 1} \frac{x^{2}-k x+4}{x-1}
$$

Solution: $k=5$

10. Determine the constant k such that $\lim _{x \rightarrow 0} f(x)$ exists, given that

$$
f(x)=\left\{\begin{array}{lll}
k e^{x} & \text { if } & -1<x<0 \\
2 & \text { if } & x=0 \\
\cos x & \text { if } & 0<x<1
\end{array}\right.
$$

Solution: $k=1$

