Concepts:

1. Derivatives of various functions

(a) Power Rule:
$$\frac{d}{dx}(x^n) = nx^{n-1}$$
 (*n* real number)

(b) Exponential functions:
$$\frac{d}{dx}(a^x) = a^x \cdot \ln(a)$$
. Note that $\frac{d}{dx}(e^x) = e^x$

(c) Trigonometric functions:

$$\bullet \quad \frac{d}{dx}(\sin x) = \cos x$$

$$\bullet \quad \frac{d}{dx}(\cos x) = -\sin x$$

$$\bullet \quad \frac{d}{dx} (\tan x) = \sec^2 x$$

$$\bullet \quad \frac{d}{dx}(\cot x) = -\csc^2 x$$

•
$$\frac{d}{dx}(\sec x) = \sec x \cdot \tan x$$

•
$$\frac{d}{dx}(\csc x) = -\csc x \cdot \cot x$$

(d) Derivatives of inverse trigonometric functions

$$\bullet \quad \frac{d}{dx}\sin^{-1}x = \frac{1}{\sqrt{1-x^2}}$$

$$\bullet \quad \frac{d}{dx}\cos^{-1}x = -\frac{1}{\sqrt{1-x^2}}$$

$$\bullet \quad \frac{d}{dx}\tan^{-1}x = \frac{1}{1+x^2}$$

2. Rules of differentiation (f and g both differentiable)

(a) Constant Multiple Rule:
$$\frac{d}{dx}(cf(x)) = c\frac{d}{dx}f(x)$$

(b) Sum Rule:
$$\frac{d}{dx} (f(x) + g(x)) = \frac{d}{dx} f(x) + \frac{d}{dx} g(x)$$

(c) Difference Rule:
$$\frac{d}{dx}(f(x)-g(x)) = \frac{d}{dx}f(x)-\frac{d}{dx}g(x)$$

(d) Product Rule:
$$\frac{d}{dx} (f(x) \cdot g(x)) = f(x) \cdot \frac{d}{dx} g(x) + g(x) \cdot \frac{d}{dx} f(x)$$

(e) Quotient Rule:
$$\frac{d}{dx} \left(\frac{f(x)}{g(x)} \right) = \frac{g(x) \cdot \frac{d}{dx} f(x) - f(x) \cdot \frac{d}{dx} g(x)}{\left(g(x) \right)^2}$$

(f) Chain Rule:

i.
$$(f \circ g)'(x) = f'(g(x)) \cdot g'(x)$$

ii. If
$$y = f(u)$$
 and $u = g(x)$, $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$

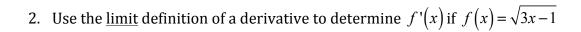
- (g) Implicit differentiation: To differentiate an expression with x and y when y may not be a function of x, differentiate both sides with respect to x and solve for $y' = \frac{dy}{dx}$ (and use the chain rule when deriving y)
 - Example: $x^3 + y^3 = 6xy$. Differentiate with respect to x to get $3x^2 + 3y^2 \frac{dy}{dx} = 6y + 6x \frac{dy}{dx} \Leftrightarrow \frac{dy}{dx} = \frac{2y x^2}{y^2 2x}$
- 3. Some applications of derivatives
 - (a) Particle moves forward or backwards according to function s(t) (t is time)
 - (b) Velocity of the particle is defined by $\frac{ds}{dt}$
 - Particle moves forward if velocity is positive
 - Particle moves backwards if velocity is negative
 - (c) Acceleration of the particle is defined by $\frac{dv}{dt} = \frac{d^2s}{dt^2}$
 - Particle is speeding up if velocity and acceleration have the same sign
 - Particle is slowing down if velocity and acceleration have opposite signs

Review Problems:

p. 255 #3, 4, 5, 30, 31, 37, 40, 47, 48 p.255 #10-13, 16

Additional review problems:

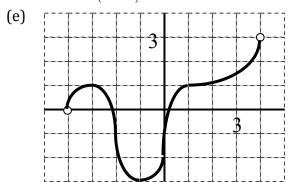
- 1. Given the graph of the derivative of a function *f* shown on the right
 - a) Determine the interval(s) on which *f* is increasing or decreasing
 - b) Determine the interval(s) on which *f* is concave up or concave down
 - c) For what value(s) of *x* is the tangent line to *f* horizontal?
 - d) If f(-2) = 4, write an equation of the line tangent to f at x = -2



- 3. A particle moves along the *x*-axis so that its position at time t is given by $s(t) = 2t^3 9t^2 + 12t 4$
 - a) Determine the velocity of the particle v(t) at time t.
 - b) Determine the acceleration of the particle a(t) at time t.
 - c) When is the particle moving to the left?
 - d) Find the total distance traveled by the particle between t = 0 and t = 4
 - e) When is the particle speeding up? When is the particle slowing down?
- 4. Consider the function $f(x) = x^2 \cdot \sin x$ on the interval $\left[-2\pi, 2\pi\right]$
 - a) Find f'(x) and f''(x)
 - b) Write equations of the tangent lines at $x = \pi$ and $x = -\pi$
 - c) On what interval(s) is f(x) increasing or decreasing? Concave up or concave down?

ANSWERS:

- 1. (a) Increasing on $(-4,-3)\cup(-1,4)$, decreasing on (-3,-1)
 - (b) Concave up on $(-2,0)\cup(1,4)$, concave down on $(-4,-2)\cup(0,1)$
 - (c) x = -3, -1, +1
 - (d) y-4=-(x+2)



2.

$$\lim_{h \to 0} \frac{\sqrt{3(x+h)-1} - \sqrt{3x-1}}{h} \cdot \frac{\sqrt{3(x+h)-1} + \sqrt{3x-1}}{\sqrt{3(x+h)-1} + \sqrt{3x-1}} =$$

$$\lim_{h \to 0} \frac{3h}{h(\sqrt{3(x+h)-1} + \sqrt{3x-1})} = \frac{3}{2\sqrt{3x-1}}$$

- 3. (a) $v(t) = 6t^2 18t + 12 = 6(t-2)(t-1)$
 - (b) a(t) = 12t 18 = 6(2t 3)
 - (c) $v(t) < 0 \Rightarrow (1,2)$
 - (d) |s(1)-s(0)|+|s(2)-s(1)|+|s(4)-s(2)|=5+1+28=34
 - (e) Speeding up when velocity and acceleration have the same sign:

$$\left(1,\frac{3}{2}\right)\cup\left(2,+\infty\right)$$

4. (a) $f'(x) = x^2 \cos x + 2x \sin x$

$$f''(x) = 4x\cos x - x^2\sin x + 2\sin x$$

(b)
$$f'(\pi) = -\pi^2, y - 0 = -\pi^2(x - \pi)$$

 $f'(-\pi) = -\pi^2, y - 0 = -\pi^2(x + \pi)$

(c)[Calc] Concave up: $\left(-3.994, -1.520\right) \cup \left(0, 1.520\right) \cup \left(3.994, 2\pi\right)$

Concave down:
$$(-2\pi, -3.994) \cup (-1.520, 0) \cup (1.520, 3.994)$$