Concepts:

- 1. Definition of a derivative
 - (a) The derivative of a function f at a is $f'(a) = \lim_{h \to 0} \frac{f(a+h) f(a)}{h}$.
 - (b) f'(a) is also the instantaneous rate of change of y = f(x) with respect to x when x = a
 - (c) The tangent line to y = f(x) at (a, f(a)) is the line through (a, f(a)) with slope of f'(a)
 - (d) The function $nDeriv(Y_1, X, a)$ on your TI-84 lets you calculate numerically the derivative of $Y_1 = f(x)$ at a.
- 2. The derivative as a function

(a)
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

(b) Notations:
$$f'(x) = y' = \frac{dy}{dx} = \frac{df}{dx} = \frac{d}{dx} f(x)$$

- (c) A function f is differentiable at a if f'(a) exists. If it is differentiable, then it is continuous (the converse is not true)
- (d) Higher derivatives:

i. Second derivative:
$$f''(x) = y'' = \frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{d^2y}{dx^2}$$

ii. Third derivative:
$$f'''(x) = y''' = \frac{d}{dx} \left(\frac{d}{dx} \left(\frac{dy}{dx} \right) \right) = \frac{d^3y}{dx^3}$$

iii. Others:
$$f^{(n)}(x) = y^{(n)} = \frac{d^n y}{dx^n}$$

3. Understanding the behavior of f(x) from its derivatives

(a)		
f(x)	f'(x)	f''(x)
Increasing	>0	
Decreasing	< 0	
Local Min/Max	when $f'(x)$ changes sign	
Concave Up	Increasing	>0
Concave Down	Decreasing	< 0
Point of inflection	Local Min/Max	when $f''(x)$ changes sign

(b) An antiderivative of f is a function F such that F' = f

Review problems:

p. 176 #26, 28, 31

p. 176 #32, 33, 34

p. 176 #35, 37, 38

p. 176 #41, 42, 46

Additional Problems:

- 1. Determine the interval(s) on which function $f(x) = 2^{x^2 x}$ is increasing.
- 2. Determine the equations of the two lines tangent to the graph of $f(x) = \frac{1}{x}$ that also go through the point P(-1,3)
- 3. Let $f(x) = x^3 + ax^2 + bx + c$ with $a \ge 0, b \ge 0$
 - a) Over what intervals is *f* concave up, and concave down?
 - b) Show that *f* must have at least one inflection point
 - c) Given that (0,-2) is the inflection point of f, determine a and c.

Answers for additional problems:

Question 1:

$$f'(x) = 2^{x^2 - x} \cdot \ln 2 \cdot (2x - 1)$$

Only the last term controls the sign of the derivative, so the function is increasing when

$$x > \frac{1}{2}$$

Question 2:

$$f'(x) = -\frac{1}{x^2}$$

Given a point $\left(a, \frac{1}{a}\right)$, the line tangent to f(x) has equation $y - \frac{1}{a} = -\frac{1}{a^2}(x - a)$

This line goes through (-1,3) so $3 - \frac{1}{a} = -\frac{1}{a^2}(-1-a)$

Simplify expression to $3a^2 - 2a - 1 = 0 \Leftrightarrow a = 1, -\frac{1}{3}$

$$a = 1 \rightarrow m = \frac{3-1}{-1-1} \rightarrow y - 1 = -1(x-1) \Leftrightarrow y = -x + 2$$

$$a = -\frac{1}{3} \rightarrow m = \frac{3 - (-3)}{-1 - (-\frac{1}{3})} = -9 \rightarrow y - 3 = -9(x+1) \Leftrightarrow y = -9x - 6$$

Question 3:

Part (a)
$$f'(x) = 3x^2 + 2ax + b$$

 $f''(x) = 6x + 2a$

Concave up when $x > -\frac{a}{3}$, concave down otherwise

Part (b) Point of inflection when second derivative changes sign: $x = -\frac{a}{3}$

Part (c)
$$-\frac{a}{3} = 0 \Rightarrow a = 0, f(0) = c \Rightarrow c = -2$$