Derivatives

1. Using the graph below.
(a) Draw a small tangent line at each point $A-F$.
(b) Arrange the following numbers in increasing order.

$$
f^{\prime}(A) \quad f^{\prime}(B) \quad f^{\prime}(C) \quad f^{\prime}(D) \quad f^{\prime}(E) \quad f^{\prime}(F)
$$

Solution: $f^{\prime}(E)<f^{\prime}(C)<f^{\prime}(A)=f^{\prime}(F)<f^{\prime}(B)<f^{\prime}(D)$

2. What is the value of the slope of the tangent line at each local maximum and minimum point in the above graph?

Solution: At each local max/min the slope of the curve is zero.
3. The temperature, $T(t)$ in degrees, in Boston t hours after midnight on a day last week is given in the table below.

t	0	2	4	6	8	10	12	14
T	53	53	50	49	52	61	68	71

(a) Estimate the average rate of the temperature change on the following intervals.
i. $[6,8]$

Solution: $\frac{52-49}{8-6}=\frac{3}{2}$
ii. $[8,10]$

$$
\text { Solution: } \frac{61-52}{10-8}=\frac{9}{2}
$$

(b) Estimate $T^{\prime}(8)$.

Solution: $\frac{\frac{3}{2}+\frac{9}{2}}{2}=3$
(c) What are the units of part (b)?

Solution: degrees per hour
(d) What is the meaning of the number $T^{\prime}(8)$?

Solution: $T^{\prime}(8)$ is the rate (how fast or slow) the temperature is rising per hour at 8a.m.
4. Determine the equation of the tangent line to the graph of $f(x)=3-4 x+2 x^{2}$ at
(a) $x=a$

Solution: You have two ways to do this. I'll use $\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} & =\lim _{h \rightarrow 0} \frac{3-4(a+h)+2(a+h)^{2}-\left(3-4 a+2 a^{2}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{3-4 a-4 h+2 a^{2}+4 a h+2 h^{2}-3+4 a-2 a^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 h^{2}+4 a h-4 h}{h}=\lim _{h \rightarrow 0} \frac{h(2 h+4 a-4)}{h} \\
& =\lim _{h \rightarrow 0} 2 h+4 a-4=4 a-4
\end{aligned}
$$

(b) $x=0$

Solution: Substitute into the answer for part (a) to get $4(0)-4=-4$.
(c) $x=1$

Solution: Substitute into the answer for part (a) to get $4(1)-4=0$.
(d) $x=2$

Solution: Substitute into the answer for part (a) to get $4(2)-4=4$.

