Math 560

Implicit Differentiation

1. (a) Use implicit differentiation to find all the points in Curve A with a horizontal tangent line. (Looking at the graph, how many such points should there be?)

Solution: Using implicit differentiation, we get $\frac{d y}{d x}=\frac{x(3 x+2)}{2 y}$, so the points where $d y / d x=$ 0 are those with x-coordinate $-\frac{2}{3}$. (We can't set $x=0$, because then the equation for Curve A says that y is also 0 . Then $d y / d x$ has a zero in the denominator.) Solving for y, we get the two points $\left(-\frac{2}{3}, \frac{4}{27}\right)$ and $\left(-\frac{2}{3},-\frac{4}{27}\right) \cdot\left(\frac{4}{27} \approx .148148 \ldots\right.$.
(b) Use implicit differentiation to find all the points in Curve B with a horizontal tangent line. (Looking at the graph, how many such points should there be?)

Solution: Using implicit differentiation, we get

$$
\frac{d y}{d x}=\frac{2 x}{2 y-\frac{3}{2} y^{2}},
$$

so the points where $d y / d x=0$ are those with $x=0$ and y nonzero. If $x=0$ on the curve, then either $y=0$ or $y=2$, so we have only the point $(0,2)$.
(c) Try to find $\frac{d y}{d x}$ at the point $(0,0)$ on both graphs. What goes wrong?

Solution: It's not possible to plug in $x=0$ and $y=0$ to either of the expressions for $\frac{d y}{d x}$. The derivative function tells us nothing about $(0,0)$.

