1. (a) $\frac{d}{d x}\left(x y+2 x+3 x^{2}\right)=\frac{d}{d x}(4) \Rightarrow\left(x \cdot y^{\prime}+y \cdot 1\right)+2+6 x=0 \Rightarrow x y^{\prime}=-y-2-6 x \Rightarrow$ $y^{\prime}=\frac{-y-2-6 x}{x}$ or $y^{\prime}=-6-\frac{y+2}{x}$.
(b) $x y+2 x+3 x^{2}=4 \Rightarrow x y=4-2 x-3 x^{2} \Rightarrow y=\frac{4-2 x-3 x^{2}}{x}=\frac{4}{x}-2-3 x$, so $y^{\prime}=-\frac{4}{x^{2}}-3$.
(c) From part (a), $y^{\prime}=\frac{-y-2-6 x}{x}=\frac{-(4 / x-2-3 x)-2-6 x}{x}=\frac{-4 / x-3 x}{x}=-\frac{4}{x^{2}}-3$.
2. $\frac{d}{d x}(4 \cos x \sin y)=\frac{d}{d x}(1) \Rightarrow 4\left[\cos x \cdot \cos y \cdot y^{\prime}+\sin y \cdot(-\sin x)\right]=0 \Rightarrow$ $y^{\prime}(4 \cos x \cos y)=4 \sin x \sin y \quad \Rightarrow \quad y^{\prime}=\frac{4 \sin x \sin y}{4 \cos x \cos y}=\tan x \tan y$
3. $\frac{d}{d x}\left\{f(x)+x^{2}[f(x)]^{3}\right\}=\frac{d}{d x}(10) \Rightarrow f^{\prime}(x)+x^{2} \cdot 3[f(x)]^{2} \cdot f^{\prime}(x)+[f(x)]^{3} \cdot 2 x=0$. If $x=1$, we have $f^{\prime}(1)+1^{2} \cdot 3[f(1)]^{2} \cdot f^{\prime}(1)+[f(1)]^{3} \cdot 2(1)=0 \Rightarrow f^{\prime}(1)+1 \cdot 3 \cdot 2^{2} \cdot f^{\prime}(1)+2^{3} \cdot 2=0 \Rightarrow$ $f^{\prime}(1)+12 f^{\prime}(1)=-16 \Rightarrow 13 f^{\prime}(1)=-16 \quad \Rightarrow \quad f^{\prime}(1)=-\frac{16}{13}$.
4. $x^{2 / 3}+y^{2 / 3}=4 \Rightarrow \frac{2}{3} x^{-1 / 3}+\frac{2}{3} y^{-1 / 3} y^{\prime}=0 \Rightarrow \frac{1}{\sqrt[3]{x}}+\frac{y^{\prime}}{\sqrt[3]{y}}=0 \Rightarrow y^{\prime}=-\frac{\sqrt[3]{y}}{\sqrt[3]{x}}$. When $x=-3 \sqrt{3}$ and $y=1$, we have $y^{\prime}=-\frac{1}{(-3 \sqrt{3})^{1 / 3}}=-\frac{(-3 \sqrt{3})^{2 / 3}}{-3 \sqrt{3}}=\frac{3}{3 \sqrt{3}}=\frac{1}{\sqrt{3}}$, so an equation of the tangent line is $y-1=\frac{1}{\sqrt{3}}(x+3 \sqrt{3})$ or $y=\frac{1}{\sqrt{3}} x+4$.
5. (a) $x^{4}+y^{4}=16 \Rightarrow 4 x^{3}+4 y^{3} y^{\prime}=0 \Rightarrow y^{3} y^{\prime}=-x^{3} \Rightarrow y^{\prime}=-x^{3} / y^{3}$
(b) $y^{\prime \prime}=-\frac{y^{3}\left(3 x^{2}\right)-\left(x^{3}\right)\left(3 y^{2} y^{\prime}\right)}{\left(y^{3}\right)^{2}}=-\frac{3 x^{2} y^{3}-3 x^{3} y^{2}\left(-x^{3} / y^{3}\right)}{y^{6}} \cdot \frac{y}{y}=-\frac{3 x^{2} y^{4}+3 x^{6}}{y^{7}}$ (c) $y^{\prime \prime}=-\frac{3 x^{2}\left(y^{4}+x^{4}\right)}{y^{7}}=-\frac{3 x^{2}(16)}{y^{7}}=-48 \frac{x^{2}}{y^{7}}$
6. $x^{2}+4 y^{2}=36 \Rightarrow 2 x+8 y y^{\prime}=0 \Rightarrow y^{\prime}=-\frac{x}{4 y}$. Let (a, b) be a point on $x^{2}+4 y^{2}=36$ whose tangent line passes through $(12,3)$. The tangent line is then $y-3=-\frac{a}{4 b}(x-12)$, so $b-3=-\frac{a}{4 b}(a-12)$. Multiplying both sides by $4 b$ gives $4 b^{2}-12 b=-a^{2}+12 a$, so $4 b^{2}+a^{2}=12(a+b)$. But $4 b^{2}+a^{2}=36$, so $36=12(a+b) \Rightarrow a+b=3 \Rightarrow$ $b=3-a$. Substituting $3-a$ for b into $a^{2}+4 b^{2}=36$ gives $a^{2}+4(3-a)^{2}=36 \quad \Leftrightarrow \quad a^{2}+36-24 a+4 a^{2}=36 \Leftrightarrow$ $5 a^{2}-24 a=0 \Leftrightarrow a(5 a-24)=0$, so $a=0$ or $a=\frac{24}{5}$. If $a=0, b=3-0=3$, and if $a=\frac{24}{5}, b=3-\frac{24}{5}=-\frac{9}{5}$. So the two points on the ellipse are $(0,3)$ and $\left(\frac{24}{5},-\frac{9}{5}\right)$. Using $y-3=-\frac{a}{4 b}(x-12)$ with $(a, b)=(0,3)$ gives us the tangent line $y-3=0$ or $y=3$. With $(a, b)=\left(\frac{24}{5},-\frac{9}{5}\right)$, we have $y-3=-\frac{24 / 5}{4(-9 / 5)}(x-12) \Leftrightarrow y-3=\frac{2}{3}(x-12) \quad \Leftrightarrow \quad y=\frac{2}{3} x-5$.
A graph of the ellipse and the tangent lines confirms our results.

