3.5 In Class Problems 2

36. $y=\sin x+\sin ^{2} x \Rightarrow y^{\prime}=\cos x+2 \sin x \cos x$. At $(0,0), y^{\prime}=1$, and an equation of the tangent line is $y-0=1(x-0)$, or $y=x$.
37. (a) $f(x)=x \sqrt{2-x^{2}}=x\left(2-x^{2}\right)^{1 / 2} \Rightarrow$ $f^{\prime}(x)=x \cdot \frac{1}{2}\left(2-x^{2}\right)^{-1 / 2}(-2 x)+\left(2-x^{2}\right)^{1 / 2} \cdot 1=\left(2-x^{2}\right)^{-1 / 2}\left[-x^{2}+\left(2-x^{2}\right)\right]=\frac{2-2 x^{2}}{\sqrt{2-x^{2}}}$
(b)

$f^{\prime}=0$ when f has a horizontal tangent line, f^{\prime} is negative when f is decreasing, and f^{\prime} is positive when f is increasing.
38. $F(x)=f(g(x)) \Rightarrow F^{\prime}(x)=f^{\prime}(g(x)) \cdot g^{\prime}(x)$, so $F^{\prime}(5)=f^{\prime}(g(5)) \cdot g^{\prime}(5)=f^{\prime}(-2) \cdot 6=4 \cdot 6=24$
39. (a) $h(x)=f(g(x)) \Rightarrow h^{\prime}(x)=f^{\prime}(g(x)) \cdot g^{\prime}(x)$, so $h^{\prime}(1)=f^{\prime}(g(1)) \cdot g^{\prime}(1)=f^{\prime}(2) \cdot 6=5 \cdot 6=30$.
(b) $H(x)=g(f(x)) \Rightarrow H^{\prime}(x)=g^{\prime}(f(x)) \cdot f^{\prime}(x)$, so $H^{\prime}(1)=g^{\prime}(f(1)) \cdot f^{\prime}(1)=g^{\prime}(3) \cdot 4=9 \cdot 4=36$.
40. (a) $u(x)=f(g(x)) \Rightarrow u^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)$. So $u^{\prime}(1)=f^{\prime}(g(1)) g^{\prime}(1)=f^{\prime}(3) g^{\prime}(1)$. To find $f^{\prime}(3)$, note that f is linear from $(2,4)$ to $(6,3)$, so its slope is $\frac{3-4}{6-2}=-\frac{1}{4}$. To find $g^{\prime}(1)$, note that g is linear from $(0,6)$ to $(2,0)$, so its slope is $\frac{0-6}{2-0}=-3$. Thus, $f^{\prime}(3) g^{\prime}(1)=\left(-\frac{1}{4}\right)(-3)=\frac{3}{4}$.
(b) $v(x)=g(f(x)) \Rightarrow v^{\prime}(x)=g^{\prime}(f(x)) f^{\prime}(x)$. So $v^{\prime}(1)=g^{\prime}(f(1)) f^{\prime}(1)=g^{\prime}(2) f^{\prime}(1)$, which does not exist since $g^{\prime}(2)$ does not exist.
(c) $w(x)=g(g(x)) \Rightarrow w^{\prime}(x)=g^{\prime}(g(x)) g^{\prime}(x)$. So $w^{\prime}(1)=g^{\prime}(g(1)) g^{\prime}(1)=g^{\prime}(3) g^{\prime}(1)$. To find $g^{\prime}(3)$, note that g is linear from $(2,0)$ to $(5,2)$, so its slope is $\frac{2-0}{5-2}=\frac{2}{3}$. Thus, $g^{\prime}(3) g^{\prime}(1)=\left(\frac{2}{3}\right)(-3)=-2$.
41. For the tangent line to be horizontal, $f^{\prime}(x)=0 . f(x)=2 \sin x+\sin ^{2} x \quad \Rightarrow \quad f^{\prime}(x)=2 \cos x+2 \sin x \cos x=0 \Leftrightarrow$ $2 \cos x(1+\sin x)=0 \Leftrightarrow \cos x=0$ or $\sin x=-1$, so $x=\frac{\pi}{2}+2 n \pi$ or $\frac{3 \pi}{2}+2 n \pi$, where n is any integer. Now $f\left(\frac{\pi}{2}\right)=3$ and $f\left(\frac{3 \pi}{2}\right)=-1$, so the points on the curve with a horizontal tangent are $\left(\frac{\pi}{2}+2 n \pi, 3\right)$ and $\left(\frac{3 \pi}{2}+2 n \pi,-1\right)$, where n is any integer.
42. $s(t)=10+\frac{1}{4} \sin (10 \pi t) \Rightarrow$ the velocity after t seconds is $v(t)=s^{\prime}(t)=\frac{1}{4} \cos (10 \pi t)(10 \pi)=\frac{5 \pi}{2} \cos (10 \pi t) \mathrm{cm} / \mathrm{s}$.
