35. $y=(1+2 x)^{10} \Rightarrow y^{\prime}=10(1+2 x)^{9} \cdot 2=20(1+2 x)^{9}$. At $(0,1), y^{\prime}=20(1+0)^{9}=20$, and an equation of the tangent line is $y-1=20(x-0)$, or $y=20 x+1$.
36. (a) $f(x)=x \sqrt{2-x^{2}}=x\left(2-x^{2}\right)^{1 / 2} \Rightarrow$ $f^{\prime}(x)=x \cdot \frac{1}{2}\left(2-x^{2}\right)^{-1 / 2}(-2 x)+\left(2-x^{2}\right)^{1 / 2} \cdot 1=\left(2-x^{2}\right)^{-1 / 2}\left[-x^{2}+\left(2-x^{2}\right)\right]=\frac{2-2 x^{2}}{\sqrt{2-x^{2}}}$
(b)

$f^{\prime}=0$ when f has a horizontal tangent line, f^{\prime} is negative when f is decreasing, and f^{\prime} is positive when f is increasing.
37. $h(x)=\sqrt{4+3 f(x)} \Rightarrow h^{\prime}(x)=\frac{1}{2}(4+3 f(x))^{-1 / 2} \cdot 3 f^{\prime}(x)$, so $h^{\prime}(1)=\frac{1}{2}(4+3 f(1))^{-1 / 2} \cdot 3 f^{\prime}(1)=\frac{1}{2}(4+3 \cdot 7)^{-1 / 2} \cdot 3 \cdot 4=\frac{6}{\sqrt{25}}=\frac{6}{5}$
38. (a) $F(x)=f(f(x)) \Rightarrow F^{\prime}(x)=f^{\prime}(f(x)) \cdot f^{\prime}(x)$, so $F^{\prime}(2)=f^{\prime}(f(2)) \cdot f^{\prime}(2)=f^{\prime}(1) \cdot 5=4 \cdot 5=20$.
(b) $G(x)=g(g(x)) \Rightarrow G^{\prime}(x)=g^{\prime}(g(x)) \cdot g^{\prime}(x)$, so $G^{\prime}(3)=g^{\prime}(g(3)) \cdot g^{\prime}(3)=g^{\prime}(2) \cdot 9=7 \cdot 9=63$.
39. (a) $h(x)=f(f(x)) \Rightarrow h^{\prime}(x)=f^{\prime}(f(x)) f^{\prime}(x)$. So $h^{\prime}(2)=f^{\prime}(f(2)) f^{\prime}(2)=f^{\prime}(1) f^{\prime}(2) \approx(-1)(-1)=1$.
(b) $g(x)=f\left(x^{2}\right) \Rightarrow g^{\prime}(x)=f^{\prime}\left(x^{2}\right) \cdot \frac{d}{d x}\left(x^{2}\right)=f^{\prime}\left(x^{2}\right)(2 x)$. So $g^{\prime}(2)=f^{\prime}\left(2^{2}\right)(2 \cdot 2)=4 f^{\prime}(4) \approx 4(1.5)=6$.
40. $y=e^{-x^{2}} \Rightarrow y^{\prime}=e^{-x^{2}}(-2 x) \Rightarrow y^{\prime \prime}=e^{-x^{2}}(-2)+(-2 x) e^{-x^{2}}(-2 x)=2 e^{-x^{2}}\left(2 x^{2}-1\right) . \quad y^{\prime \prime}=0 \Leftrightarrow$ $2 x^{2}-1=0 \Leftrightarrow x= \pm \frac{\sqrt{2}}{2}$. The curve is concave downward when $y^{\prime \prime}<0$. This is the case on the interval $\left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$.
41. (a) $s=A \cos (\omega t+\delta) \Rightarrow$ velocity $=s^{\prime}=-\omega A \sin (\omega t+\delta)$.
(b) If $A \neq 0$ and $\omega \neq 0$, then $s^{\prime}=0 \Leftrightarrow \sin (\omega t+\delta)=0 \Leftrightarrow \omega t+\delta=n \pi \quad \Leftrightarrow t=\frac{n \pi-\delta}{\omega}, n$ an integer.
