17. $g(x)=(1+4 x)^{5}\left(3+x-x^{2}\right)^{8} \Rightarrow$

$$
\begin{aligned}
g^{\prime}(x) & =(1+4 x)^{5} \cdot 8\left(3+x-x^{2}\right)^{7}(1-2 x)+\left(3+x-x^{2}\right)^{8} \cdot 5(1+4 x)^{4} \cdot 4 \\
& =4(1+4 x)^{4}\left(3+x-x^{2}\right)^{7}\left[2(1+4 x)(1-2 x)+5\left(3+x-x^{2}\right)\right] \\
& =4(1+4 x)^{4}\left(3+x-x^{2}\right)^{7}\left[\left(2+4 x-16 x^{2}\right)+\left(15+5 x-5 x^{2}\right)\right]=4(1+4 x)^{4}\left(3+x-x^{2}\right)^{7}\left(17+9 x-21 x^{2}\right)
\end{aligned}
$$

18. $h(t)=\left(t^{4}-1\right)^{3}\left(t^{3}+1\right)^{4} \Rightarrow$

$$
\begin{aligned}
h^{\prime}(t) & =\left(t^{4}-1\right)^{3} \cdot 4\left(t^{3}+1\right)^{3}\left(3 t^{2}\right)+\left(t^{3}+1\right)^{4} \cdot 3\left(t^{4}-1\right)^{2}\left(4 t^{3}\right) \\
& =12 t^{2}\left(t^{4}-1\right)^{2}\left(t^{3}+1\right)^{3}\left[\left(t^{4}-1\right)+t\left(t^{3}+1\right)\right]=12 t^{2}\left(t^{4}-1\right)^{2}\left(t^{3}+1\right)^{3}\left(2 t^{4}+t-1\right)
\end{aligned}
$$

19. $y=e^{x \cos x} \Rightarrow y^{\prime}=e^{x \cos x} \cdot \frac{d}{d x}(x \cos x)=e^{x \cos x}[x(-\sin x)+(\cos x) \cdot 1]=e^{x \cos x}(\cos x-x \sin x)$
20. Using Formula 5 and the Chain Rule, $y=10^{1-x^{2}} \Rightarrow y^{\prime}=10^{1-x^{2}}(\ln 10) \cdot \frac{d}{d x}\left(1-x^{2}\right)=-2 x(\ln 10) 10^{1-x^{2}}$.
21. $F(z)=\sqrt{\frac{z-1}{z+1}}=\left(\frac{z-1}{z+1}\right)^{1 / 2} \Rightarrow$

$$
\begin{aligned}
F^{\prime}(z) & =\frac{1}{2}\left(\frac{z-1}{z+1}\right)^{-1 / 2} \cdot \frac{d}{d z}\left(\frac{z-1}{z+1}\right)=\frac{1}{2}\left(\frac{z+1}{z-1}\right)^{1 / 2} \cdot \frac{(z+1)(1)-(z-1)(1)}{(z+1)^{2}} \\
& =\frac{1}{2} \frac{(z+1)^{1 / 2}}{(z-1)^{1 / 2}} \cdot \frac{z+1-z+1}{(z+1)^{2}}=\frac{1}{2} \frac{(z+1)^{1 / 2}}{(z-1)^{1 / 2}} \cdot \frac{2}{(z+1)^{2}}=\frac{1}{(z-1)^{1 / 2}(z+1)^{3 / 2}}
\end{aligned}
$$

22. $G(y)=\left(\frac{y^{2}}{y+1}\right)^{5} \Rightarrow G^{\prime}(y)=5\left(\frac{y^{2}}{y+1}\right)^{4} \cdot \frac{(y+1)(2 y)-y^{2}(1)}{(y+1)^{2}}=5 \cdot \frac{y^{8}}{(y+1)^{4}} \cdot \frac{y(2 y+2-y)}{(y+1)^{2}}=\frac{5 y^{9}(y+2)}{(y+1)^{6}}$
23. $y=\sec ^{2} x+\tan ^{2} x=(\sec x)^{2}+(\tan x)^{2} \Rightarrow$
$y^{\prime}=2(\sec x)(\sec x \tan x)+2(\tan x)\left(\sec ^{2} x\right)=2 \sec ^{2} x \tan x+2 \sec ^{2} x \tan x=4 \sec ^{2} x \tan x$
24. $y=e^{k \tan \sqrt{x}} \Rightarrow y^{\prime}=e^{k \tan \sqrt{x}} \cdot \frac{d}{d x}(k \tan \sqrt{x})=e^{k \tan \sqrt{x}}\left(k \sec ^{2} \sqrt{x} \cdot \frac{1}{2} x^{-1 / 2}\right)=\frac{k \sec ^{2} \sqrt{x}}{2 \sqrt{x}} e^{k \tan \sqrt{x}}$
25. $y=\frac{r}{\sqrt{r^{2}+1}} \Rightarrow$

$$
\begin{aligned}
y^{\prime} & =\frac{\sqrt{r^{2}+1}(1)-r \cdot \frac{1}{2}\left(r^{2}+1\right)^{-1 / 2}(2 r)}{\left(\sqrt{r^{2}+1}\right)^{2}}=\frac{\sqrt{r^{2}+1}-\frac{r^{2}}{\sqrt{r^{2}+1}}}{\left(\sqrt{r^{2}+1}\right)^{2}}=\frac{\frac{\sqrt{r^{2}+1} \sqrt{r^{2}+1}-r^{2}}{\sqrt{r^{2}+1}}}{\left(\sqrt{r^{2}+1}\right)^{2}} \\
& =\frac{\left(r^{2}+1\right)-r^{2}}{\left(\sqrt{r^{2}+1}\right)^{3}}=\frac{1}{\left(r^{2}+1\right)^{3 / 2}} \text { or }\left(r^{2}+1\right)^{-3 / 2}
\end{aligned}
$$

Another solution: Write y as a product and make use of the Product Rule. $y=r\left(r^{2}+1\right)^{-1 / 2} \Rightarrow$ $y^{\prime}=r \cdot-\frac{1}{2}\left(r^{2}+1\right)^{-3 / 2}(2 r)+\left(r^{2}+1\right)^{-1 / 2} \cdot 1=\left(r^{2}+1\right)^{-3 / 2}\left[-r^{2}+\left(r^{2}+1\right)^{1}\right]=\left(r^{2}+1\right)^{-3 / 2}(1)=\left(r^{2}+1\right)^{-3 / 2}$. The step that students usually have trouble with is factoring out $\left(r^{2}+1\right)^{-3 / 2}$. But this is no different than factoring out x^{2} from $x^{2}+x^{5}$; that is, we are just factoring out a factor with the smallest exponent that appears on it. In this case, $-\frac{3}{2}$ is smaller than $-\frac{1}{2}$.
26. $y=\frac{e^{u}-e^{-u}}{e^{u}+e^{-u}} \Rightarrow$

$$
\begin{aligned}
y^{\prime} & =\frac{\left(e^{u}+e^{-u}\right)\left(e^{u}-\left(-e^{u}\right)\right)-\left(e^{u}-e^{-u}\right)\left(e^{u}+\left(-e^{-u}\right)\right)}{\left(e^{u}+e^{-u}\right)^{2}} \\
& =\frac{e^{2 u}+e^{0}+e^{0}+e^{-2 u}-\left(e^{2 u}-e^{0}-e^{0}+e^{-2 u}\right)}{\left(e^{u}+e^{-u}\right)^{2}}=\frac{4 e^{0}}{\left(e^{u}+e^{-u}\right)^{2}}=\frac{4}{\left(e^{u}+e^{-u}\right)^{2}}
\end{aligned}
$$

27. Using Formula 5 and the Chain Rule, $y=2^{\sin \pi x} \Rightarrow$
$y^{\prime}=2^{\sin \pi x}(\ln 2) \cdot \frac{d}{d x}(\sin \pi x)=2^{\sin \pi x}(\ln 2) \cdot \cos \pi x \cdot \pi=2^{\sin \pi x}(\pi \ln 2) \cos \pi x$
28. $y=\tan ^{2}(3 \theta)=(\tan 3 \theta)^{2} \Rightarrow y^{\prime}=2(\tan 3 \theta) \cdot \frac{d}{d \theta}(\tan 3 \theta)=2 \tan 3 \theta \cdot \sec ^{2} 3 \theta \cdot 3=6 \tan 3 \theta \sec ^{2} 3 \theta$
29. $y=\cot ^{2}(\sin \theta)=[\cot (\sin \theta)]^{2} \Rightarrow$
$y^{\prime}=2[\cot (\sin \theta)] \cdot \frac{d}{d \theta}[\cot (\sin \theta)]=2 \cot (\sin \theta) \cdot\left[-\csc ^{2}(\sin \theta) \cdot \cos \theta\right]=-2 \cos \theta \cot (\sin \theta) \csc ^{2}(\sin \theta)$
30. $y=\sin (\sin (\sin x)) \Rightarrow y^{\prime}=\cos (\sin (\sin x)) \frac{d}{d x}(\sin (\sin x))=\cos (\sin (\sin x)) \cos (\sin x) \cos x$
31. $y=\sin (\tan \sqrt{\sin x}) \Rightarrow$
$y^{\prime}=\cos (\tan \sqrt{\sin x}) \cdot \frac{d}{d x}(\tan \sqrt{\sin x})=\cos (\tan \sqrt{\sin x}) \sec ^{2} \sqrt{\sin x} \cdot \frac{d}{d x}(\sin x)^{1 / 2}$ $=\cos (\tan \sqrt{\sin x}) \sec ^{2} \sqrt{\sin x} \cdot \frac{1}{2}(\sin x)^{-1 / 2} \cdot \cos x=\cos (\tan \sqrt{\sin x})\left(\sec ^{2} \sqrt{\sin x}\right)\left(\frac{1}{2 \sqrt{\sin x}}\right)(\cos x)$
32. (a) $y=\frac{2}{1+e^{-x}} \Rightarrow y^{\prime}=\frac{\left(1+e^{-x}\right)(0)-2\left(-e^{-x}\right)}{\left(1+e^{-x}\right)^{2}}=\frac{2 e^{-x}}{\left(1+e^{-x}\right)^{2}}$.
(b) At $(0,1), y^{\prime}=\frac{2 e^{0}}{\left(1+e^{0}\right)^{2}}=\frac{2(1)}{(1+1)^{2}}=\frac{2}{2^{2}}=\frac{1}{2}$. So an equation of the tangent line is $y-1=\frac{1}{2}(x-0)$ or $y=\frac{1}{2} x+1$.

