3. By the Product Rule, $f(x)=x^{2} e^{x} \quad \Rightarrow \quad f^{\prime}(x)=x^{2} \frac{d}{d x}\left(e^{x}\right)+e^{x} \frac{d}{d x}\left(x^{2}\right)=x^{2} e^{x}+e^{x}(2 x)=x e^{x}(x+2)$.
4. By the Quotient Rule, $y=\frac{e^{x}}{x^{2}} \Rightarrow$

$$
y^{\prime}=\frac{x^{2} \frac{d}{d x}\left(e^{x}\right)-e^{x} \frac{d}{d x}\left(x^{2}\right)}{\left(x^{2}\right)^{2}}=\frac{x^{2}\left(e^{x}\right)-e^{x}(2 x)}{x^{4}}=\frac{x e^{x}(x-2)}{x^{4}}=\frac{e^{x}(x-2)}{x^{3}} .
$$

7. $g(x)=\frac{3 x-1}{2 x+1} \stackrel{\text { QR }}{\Rightarrow} \quad g^{\prime}(x)=\frac{(2 x+1)(3)-(3 x-1)(2)}{(2 x+1)^{2}}=\frac{6 x+3-6 x+2}{(2 x+1)^{2}}=\frac{5}{(2 x+1)^{2}}$
8. $F(y)=\left(\frac{1}{y^{2}}-\frac{3}{y^{4}}\right)\left(y+5 y^{3}\right)=\left(y^{-2}-3 y^{-4}\right)\left(y+5 y^{3}\right) \stackrel{\mathrm{pR}}{\Rightarrow}$

$$
\begin{aligned}
F^{\prime}(y) & =\left(y^{-2}-3 y^{-4}\right)\left(1+15 y^{2}\right)+\left(y+5 y^{3}\right)\left(-2 y^{-3}+12 y^{-5}\right) \\
& =\left(y^{-2}+15-3 y^{-4}-45 y^{-2}\right)+\left(-2 y^{-2}+12 y^{-4}-10+60 y^{-2}\right) \\
& =5+14 y^{-2}+9 y^{-4} \text { or } 5+14 / y^{2}+9 / y^{4}
\end{aligned}
$$

11. $y=\frac{t^{2}}{3 t^{2}-2 t+1} \stackrel{\mathrm{QR}}{\Rightarrow}$

$$
y^{\prime}=\frac{\left(3 t^{2}-2 t+1\right)(2 t)-t^{2}(6 t-2)}{\left(3 t^{2}-2 t+1\right)^{2}}=\frac{2 t\left[3 t^{2}-2 t+1-t(3 t-1)\right]}{\left(3 t^{2}-2 t+1\right)^{2}}=\frac{2 t\left(3 t^{2}-2 t+1-3 t^{2}+t\right)}{\left(3 t^{2}-2 t+1\right)^{2}}=\frac{2 t(1-t)}{\left(3 t^{2}-2 t+1\right)^{2}}
$$

13. $y=\left(r^{2}-2 r\right) e^{r} \stackrel{\mathrm{PR}}{\Rightarrow} y^{\prime}=\left(r^{2}-2 r\right)\left(e^{r}\right)+e^{r}(2 r-2)=e^{r}\left(r^{2}-2 r+2 r-2\right)=e^{r}\left(r^{2}-2\right)$
14. $y=2 x e^{x} \Rightarrow y^{\prime}=2\left(x \cdot e^{x}+e^{x} \cdot 1\right)=2 e^{x}\left((x+1)\right.$. At $(0,0), y^{\prime}=2 e^{0}(0+1)=2 \cdot 1 \cdot 1=2$, and an equation of the tangent line is $y-0=2(x-0)$, or $y=2 x$. The slope of the normal line is $-\frac{1}{2}$, so an equation of the normal line is $y-0=-\frac{1}{2}(x-0)$, or $y=-\frac{1}{2} x$.
15. We are given that $f(5)=1, f^{\prime}(5)=6, g(5)=-3$, and $g^{\prime}(5)=2$.
(a) $(f g)^{\prime}(5)=f(5) g^{\prime}(5)+g(5) f^{\prime}(5)=(1)(2)+(-3)(6)=2-18=-16$
(b) $\left(\frac{f}{g}\right)^{\prime}(5)=\frac{g(5) f^{\prime}(5)-f(5) g^{\prime}(5)}{[g(5)]^{2}}=\frac{(-3)(6)-(1)(2)}{(-3)^{2}}=-\frac{20}{9}$
(c) $\left(\frac{g}{f}\right)^{\prime}(5)=\frac{f(5) g^{\prime}(5)-g(5) f^{\prime}(5)}{[f(5)]^{2}}=\frac{(1)(2)-(-3)(6)}{(1)^{2}}=20$
16. (a) From the graphs of f and g, we obtain the following values: $f(1)=2$ since the point $(1,2)$ is on the graph of f; $g(1)=1$ since the point $(1,1)$ is on the graph of $g ; f^{\prime}(1)=2$ since the slope of the line segment between $(0,0)$ and $(2,4)$ is $\frac{4-0}{2-0}=2 ; g^{\prime}(1)=-1$ since the slope of the line segment between $(-2,4)$ and $(2,0)$ is $\frac{0-4}{2-(-2)}=-1$. Now $u(x)=f(x) g(x)$, so $u^{\prime}(1)=f(1) g^{\prime}(1)+g(1) f^{\prime}(1)=2 \cdot(-1)+1 \cdot 2=0$.
(b) $v(x)=f(x) / g(x)$, so $v^{\prime}(5)=\frac{g(5) f^{\prime}(5)-f(5) g^{\prime}(5)}{[g(5)]^{2}}=\frac{2\left(-\frac{1}{3}\right)-3 \cdot \frac{2}{3}}{2^{2}}=\frac{-\frac{8}{3}}{4}=-\frac{2}{3}$
