Section 2.8 Homework 2

31. f is not differentiable at $x=-4$, because the graph has a corner there, and at $x=0$, because there is a discontinuity there.
32. f is not differentiable at $x=0$, because there is a discontinuity there, and at $x=3$, because the graph has a vertical tangent there.
33. f is not differentiable at $x=-1$, because the graph has a vertical tangent there, and at $x=4$, because the graph has a corner there.
34. f is not differentiable at $x=-1$, because there is a discontinuity there, and at $x=2$, because the graph has a corner there.
35. Where d has horizontal tangents, only c is 0 , so $d^{\prime}=c$. c has negative tangents for $x<0$ and b is the only graph that is negative for $x<0$, so $c^{\prime}=b$. b has positive tangents on \mathbb{R} (except at $x=0$), and the only graph that is positive on the same domain is a, so $b^{\prime}=a$. We conclude that $d=f, c=f^{\prime}, b=f^{\prime \prime}$, and $a=f^{\prime \prime \prime}$.
36. $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\frac{1}{x+h}-\frac{1}{x}}{h}=\lim _{h \rightarrow 0} \frac{x-(x+h)}{h x(x+h)}=\lim _{h \rightarrow 0} \frac{-h}{h x(x+h)}=\lim _{h \rightarrow 0} \frac{-1}{x(x+h)}=-\frac{1}{x^{2}}$

$$
\begin{aligned}
f^{\prime \prime}(x) & =\lim _{h \rightarrow 0} \frac{f^{\prime}(x+h)-f^{\prime}(x)}{h}=\lim _{h \rightarrow 0} \frac{-\frac{1}{(x+h)^{2}}-\left(-\frac{1}{x^{2}}\right)}{h}=\lim _{h \rightarrow 0} \frac{-x^{2}+(x+h)^{2}}{h x^{2}(x+h)^{2}}=\lim _{h \rightarrow 0} \frac{2 h x+h^{2}}{h x^{2}(x+h)^{2}} \\
& =\lim _{h \rightarrow 0} \frac{2 x+h}{x^{2}(x+h)^{2}}=\frac{2 x}{x^{4}}=\frac{2}{x^{3}}
\end{aligned}
$$

We see from the graph that our answers are reasonable because the graph of f^{\prime} is that of an even function and is negative for all $x \neq 0$, and the graph of $f^{\prime \prime}$ is that of an odd function (negative for $x<0$ and positive for $x>0$).
47. $f(x)=|x-6|=\left\{\begin{array}{ll}x-6 & \text { if } x-6 \geq 6 \\ -(x-6) & \text { if } x-6<0\end{array}= \begin{cases}x-6 & \text { if } x \geq 6 \\ 6-x & \text { if } x<6\end{cases}\right.$

So the right-hand $\operatorname{limit}^{\text {is }} \lim _{x \rightarrow 6^{+}} \frac{f(x)-f(6)}{x-6}=\lim _{x \rightarrow 6^{+}} \frac{|x-6|-0}{x-6}=\lim _{x \rightarrow 6^{+}} \frac{x-6}{x-6}=\lim _{x \rightarrow 6^{+}} 1=1$, and the left-hand limit is $\lim _{x \rightarrow 6^{-}} \frac{f(x)-f(6)}{x-6}=\lim _{x \rightarrow 6^{-}} \frac{|x-6|-0}{x-6}=\lim _{x \rightarrow 6^{-}} \frac{6-x}{x-6}=\lim _{x \rightarrow 6^{-}}(-1)=-1$. Since these limits are not equal, $f^{\prime}(6)=\lim _{x \rightarrow 6} \frac{f(x)-f(6)}{x-6}$ does not exist and f is not differentiable at 6 .
However, a formula for f^{\prime} is $f^{\prime}(x)= \begin{cases}1 & \text { if } x>6 \\ -1 & \text { if } x<6\end{cases}$
Another way of writing the formula is $f^{\prime}(x)=\frac{x-6}{|x-6|}$.

