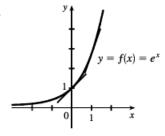
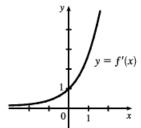
14. See Figure 1 in Section 3.4.

15.





The slope at 0 appears to be 1 and the slope at 1 appears to be 2.7. As x decreases, the slope gets closer to 0. Since the graphs are so similar, we might guess that $f'(x) = e^x$.

$$23. \ g'(x) = \lim_{h \to 0} \frac{g(x+h) - g(x)}{h} = \lim_{h \to 0} \frac{\sqrt{1 + 2(x+h)} - \sqrt{1 + 2x}}{h} \left[\frac{\sqrt{1 + 2(x+h)} + \sqrt{1 + 2x}}{\sqrt{1 + 2(x+h)} + \sqrt{1 + 2x}} \right]$$

$$= \lim_{h \to 0} \frac{(1 + 2x + 2h) - (1 + 2x)}{h \left[\sqrt{1 + 2(x+h)} + \sqrt{1 + 2x} \right]} = \lim_{h \to 0} \frac{2}{\sqrt{1 + 2x + 2h} + \sqrt{1 + 2x}} = \frac{2}{2\sqrt{1 + 2x}} = \frac{1}{\sqrt{1 + 2x}}$$

Domain of $g = \left[-\frac{1}{2}, \infty\right)$, domain of $g' = \left(-\frac{1}{2}, \infty\right)$.

25.
$$G'(t) = \lim_{h \to 0} \frac{G(t+h) - G(t)}{h} = \lim_{h \to 0} \frac{\frac{4(t+h)}{(t+h)+1} - \frac{4t}{t+1}}{h} = \lim_{h \to 0} \frac{\frac{4(t+h)(t+1) - 4t(t+h+1)}{(t+h+1)(t+1)}}{h}$$
$$= \lim_{h \to 0} \frac{\left(4t^2 + 4ht + 4t + 4h\right) - \left(4t^2 + 4ht + 4t\right)}{h(t+h+1)(t+1)} = \lim_{h \to 0} \frac{4h}{h(t+h+1)(t+1)}$$
$$= \lim_{h \to 0} \frac{4}{(t+h+1)(t+1)} = \frac{4}{(t+h)(t+1)^2}$$

Domain of $G = \text{domain of } G' = (-\infty, -1) \cup (-1, \infty).$

Section 2.8 Homework 1 Problems

- 29. (a) U'(t) is the rate at which the unemployment rate is changing with respect to time. Its units are percent per year.
 - (b) To find U'(t), we use $\lim_{h\to 0} \frac{U(t+h)-U(t)}{h} \approx \frac{U(t+h)-U(t)}{h}$ for small values of h.

For 1993:
$$U'(1993) \approx \frac{U(1994) - U(1993)}{1994 - 1993} = \frac{6.1 - 6.9}{1} = -0.80$$

For 1994: We estimate U'(1994) by using h = -1 and h = 1, and then average the two results to obtain a final estimate.

$$h = -1 \ \Rightarrow \ U'(1994) \approx \frac{U(1993) - U(1994)}{1993 - 1994} = \frac{6.9 - 6.1}{-1} = -0.80;$$

$$h = 1 \implies U'(1994) \approx \frac{U(1995) - U(1994)}{1995 - 1994} = \frac{5.6 - 6.1}{1} = -0.50.$$

So we estimate that $U'(1994) \approx \frac{1}{2}[(-0.80) + (-0.50)] = -0.65$.

t	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002
U'(t)	1993 -0.80	-0.65	-0.35	-0.35	-0.45	-0.35	-0.25	0.25	0.90	1.10