21. Divide both the numerator and denominator by x^{3} (the highest power of x that occurs in the denominator).

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{x^{3}+5 x}{2 x^{3}-x^{2}+4} & =\lim _{x \rightarrow \infty} \frac{\frac{x^{3}+5 x}{x^{3}}}{\frac{2 x^{3}-x^{2}+4}{x^{3}}}=\lim _{x \rightarrow \infty} \frac{1+\frac{5}{x^{2}}}{2-\frac{1}{x}+\frac{4}{x^{3}}}=\frac{\lim _{x \rightarrow \infty}\left(1+\frac{5}{x^{2}}\right)}{\lim _{x \rightarrow \infty}\left(2-\frac{1}{x}+\frac{4}{x^{3}}\right)} \\
& =\frac{\lim _{x \rightarrow \infty} 1+5 \lim _{x \rightarrow \infty} \frac{1}{x^{2}}}{\lim _{x \rightarrow \infty} 2-\lim _{x \rightarrow \infty} \frac{1}{x}+4 \lim _{x \rightarrow \infty} \frac{1}{x^{3}}}=\frac{1+5(0)}{2-0+4(0)}=\frac{1}{2}
\end{aligned}
$$

22. $\lim _{t \rightarrow-\infty} \frac{t^{2}+2}{t^{3}+t^{2}-1}=\lim _{t \rightarrow-\infty} \frac{\left(t^{2}+2\right) / t^{3}}{\left(t^{3}+t^{2}-1\right) / t^{3}}=\lim _{t \rightarrow-\infty} \frac{1 / t+2 / t^{3}}{1+1 / t-1 / t^{3}}=\frac{0+0}{1+0-0}=0$
23. First, multiply the factors in the denominator. Then divide both the numerator and denominator by u^{4}.
$\begin{aligned} \lim _{u \rightarrow \infty} \frac{4 u^{4}+5}{\left(u^{2}-2\right)\left(2 u^{2}-1\right)} & =\lim _{u \rightarrow \infty} \frac{4 u^{4}+5}{2 u^{4}-5 u^{2}+2}=\lim _{u \rightarrow \infty} \frac{\frac{4 u^{4}+5}{u^{4}}}{\frac{2 u^{4}-5 u^{2}+2}{u^{4}}}=\lim _{u \rightarrow \infty} \frac{4+\frac{5}{u^{4}}}{2-\frac{5}{u^{2}}+\frac{2}{u^{4}}} \\ & =\frac{\lim _{u \rightarrow \infty}\left(4+\frac{5}{u^{4}}\right)}{\lim _{u \rightarrow \infty}\left(2-\frac{5}{u^{2}}+\frac{2}{u^{4}}\right)}=\frac{\lim _{u \rightarrow \infty} 4+5 \lim _{u \rightarrow \infty} \frac{1}{u^{4}}}{\lim _{u \rightarrow \infty} 2-5 \lim _{u \rightarrow \infty} \frac{1}{u^{2}}+2 \lim _{u \rightarrow \infty} \frac{1}{u^{4}}}=\frac{4+5(0)}{2-5(0)+2(0)}=\frac{4}{2}=2\end{aligned}$
24. $\lim _{x \rightarrow \infty} \frac{x+2}{\sqrt{9 x^{2}+1}}=\lim _{x \rightarrow \infty} \frac{(x+2) / x}{\sqrt{9 x^{2}+1} / \sqrt{x^{2}}}=\lim _{x \rightarrow \infty} \frac{1+2 / x}{\sqrt{9+1 / x^{2}}}=\frac{1+0}{\sqrt{9+0}}=\frac{1}{3}$
25. $\lim _{x \rightarrow \infty}\left(\sqrt{9 x^{2}+x}-3 x\right)=\lim _{x \rightarrow \infty} \frac{\left(\sqrt{9 x^{2}+x}-3 x\right)\left(\sqrt{9 x^{2}+x}+3 x\right)}{\sqrt{9 x^{2}+x}+3 x}=\lim _{x \rightarrow \infty} \frac{\left(\sqrt{9 x^{2}+x}\right)^{2}-(3 x)^{2}}{\sqrt{9 x^{2}+x}+3 x}$

$$
=\lim _{x \rightarrow \infty} \frac{\left(9 x^{2}+x\right)-9 x^{2}}{\sqrt{9 x^{2}+x}+3 x}=\lim _{x \rightarrow \infty} \frac{x}{\sqrt{9 x^{2}+x}+3 x} \cdot \frac{1 / x}{1 / x}
$$

$$
=\lim _{x \rightarrow \infty} \frac{x / x}{\sqrt{9 x^{2} / x^{2}+x / x^{2}}+3 x / x}=\lim _{x \rightarrow \infty} \frac{1}{\sqrt{9+1 / x}+3}=\frac{1}{\sqrt{9}+3}=\frac{1}{3+3}=\frac{1}{6}
$$

27. $\lim _{x \rightarrow \infty} \cos x$ does not exist because as x increases $\cos x$ does not approach any one value, but oscillates between 1 and -1 .
28. $\lim _{x \rightarrow \infty} \tan ^{-1}\left(x^{2}-x^{4}\right)=\lim _{x \rightarrow \infty} \tan ^{-1}\left(x^{2}\left(1-x^{2}\right)\right)$. If we let $t=x^{2}\left(1-x^{2}\right)$, we know that $t \rightarrow-\infty$ as $x \rightarrow \infty$, since $x^{2} \rightarrow \infty$ and $1-x^{2} \rightarrow-\infty$. So $\lim _{x \rightarrow \infty} \tan ^{-1}\left(x^{2}\left(1-x^{2}\right)\right)=\lim _{t \rightarrow-\infty} \tan ^{-1} t=-\frac{\pi}{2}$.
29. $\lim _{x \rightarrow-\infty}\left(x^{4}+x^{5}\right)=\lim _{x \rightarrow-\infty} x^{5}\left(\frac{1}{x}+1\right)$ [factor out the largest power of $\left.x\right]=-\infty$ because $x^{5} \rightarrow-\infty$ and $1 / x+1 \rightarrow 1$ as $x \rightarrow-\infty$.
30. Since the function has vertical asymptotes $x=1$ and $x=3$, the denominator of the rational function we are looking for must have factors $(x-1)$ and $(x-3)$. Because the horizontal asymptote is $y=1$, the degree of the numerator must equal the degree of the denominator, and the ratio of the leading coefficients must be 1 . One possibility is $f(x)=\frac{x^{2}}{(x-1)(x-3)}$.
31. Let's look for a rational function.
(1) $\lim _{x \rightarrow \pm \infty} f(x)=0 \Rightarrow$ degree of numerator $<$ degree of denominator
(2) $\lim _{x \rightarrow 0} f(x)=-\infty \Rightarrow$ there is a factor of x^{2} in the denominator (not just x, since that would produce a sign change at $x=0$), and the function is negative near $x=0$.
(3) $\lim _{x \rightarrow 3^{-}} f(x)=\infty$ and $\lim _{x \rightarrow 3^{+}} f(x)=-\infty \Rightarrow$ vertical asymptote at $x=3$; there is a factor of $(x-3)$ in the denominator.
(4) $f(2)=0 \Rightarrow 2$ is an x-intercept; there is at least one factor of $(x-2)$ in the numerator.

Combining all of this information and putting in a negative sign to give us the desired left- and right-hand limits gives us $f(x)=\frac{2-x}{x^{2}(x-3)}$ as one possibility.
47. (a) After t minutes, $25 t$ liters of brine with 30 g of salt per liter has been pumped into the tank, so it contains $(5000+25 t)$ liters of water and $25 t \cdot 30=750 t$ grams of salt. Therefore, the salt concentration at time t will be $C(t)=\frac{750 t}{5000+25 t}=\frac{30 t}{200+t} \frac{\mathrm{~g}}{\mathrm{~L}}$.
(b) $\lim _{t \rightarrow \infty} C(t)=\lim _{t \rightarrow \infty} \frac{30 t}{200+t}=\lim _{t \rightarrow \infty} \frac{30 t / t}{200 / t+t / t}=\frac{30}{0+1}=30$. So the salt concentration approaches that of the brine being pumped into the tank.

