4. (a) $\lim _{x \rightarrow \infty} g(x)=2$
(b) $\lim _{x \rightarrow-\infty} g(x)=-2$
(c) $\lim _{x \rightarrow 3} g(x)=\infty$
(d) $\lim _{x \rightarrow 0} g(x)=-\infty$
(e) $\lim _{x \rightarrow-2^{+}} g(x)=-\infty$
(f) Vertical: $x=-2, x=0, x=3$; Horizontal: $y=-2, y=2$
5. $\lim _{x \rightarrow 2} f(x)=-\infty, \quad \lim _{x \rightarrow \infty} f(x)=\infty$,
$\lim _{x \rightarrow-\infty} f(x)=0, \quad \lim _{x \rightarrow 0^{+}} f(x)=\infty$,
$\lim _{x \rightarrow 0^{-}} f(x)=-\infty$

6. (a) $f(x)=1 /\left(x^{3}-1\right)$

x	$f(x)$
0.5	-1.14
0.9	-3.69
0.99	-33.7
0.999	-333.7
0.9999	-3333.7
0.99999	$-33,333.7$

x	$f(x)$
1.5	0.42
1.1	3.02
1.01	33.0
1.001	333.0
1.0001	3333.0
1.00001	$33,333.3$

From these calculations, it seems that $\lim _{x \rightarrow 1^{-}} f(x)=-\infty$ and $\lim _{x \rightarrow 1^{+}} f(x)=\infty$.
(b) If x is slightly smaller than 1 , then $x^{3}-1$ will be a negative number close to 0 , and the reciprocal of $x^{3}-1$, that is, $f(x)$, will be a negative number with large absolute value. So $\lim _{x \rightarrow 1^{-}} f(x)=-\infty$.
If x is slightly larger than 1 , then $x^{3}-1$ will be a small positive number, and its reciprocal, $f(x)$, will be a large positive number. So $\lim _{x \rightarrow 1^{+}} f(x)=\infty$.
(c) It appears from the graph of f that $\lim _{x \rightarrow 1^{-}} f(x)=-\infty$ and $\lim _{x \rightarrow 1^{+}} f(x)=\infty$.

14. (a) From a graph of $f(x)=(1-2 / x)^{x}$ in a window of $[0,10,000]$ by $[0,0.2]$, we estimate that $\lim _{x \rightarrow \infty} f(x)=0.14$ (to two decimal places.)
(b)

x	$f(x)$
10,000	0.135308
100,000	0.135333
$1,000,000$	0.135335

From the table, we estimate that $\lim _{x \rightarrow \infty} f(x)=0.1353$ (to four decimal places.)
16. $\lim _{x \rightarrow 5^{-}} \frac{e^{x}}{(x-5)^{3}}=-\infty$ since the numerator is positive and the denominator approaches 0 from the negative side as $x \rightarrow 5^{-}$.
17. $\lim _{x \rightarrow 1} \frac{2-x}{(x-1)^{2}}=\infty$ since the numerator is positive and the denominator approaches 0 through positive values as $x \rightarrow 1$.
18. $\lim _{x \rightarrow \pi^{-}} \cot x=\lim _{x \rightarrow \pi^{-}} \frac{\cos x}{\sin x}=-\infty$ since the numerator is negative and the denominator approaches 0 through positive values as $x \rightarrow \pi^{-}$.
19. Let $t=x^{2}-9$. Then as $x \rightarrow 3^{+}, t \rightarrow 0^{+}$, and $\lim _{x \rightarrow 3^{+}} \ln \left(x^{2}-9\right)=\lim _{t \rightarrow 0^{+}} \ln t=-\infty$ by (3).

