Section 2.5 Homework

4. (a)
$$\lim_{x \to \infty} g(x) = 2$$

(b)
$$\lim_{x \to -\infty} g(x) = -2$$

(c)
$$\lim_{x \to 3} g(x) = \infty$$

(d)
$$\lim_{x \to 0} g(x) = -\infty$$

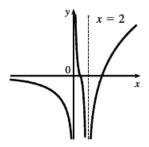
(e)
$$\lim_{x \to -2^+} g(x) = -\infty$$

$$\begin{array}{ll} \textbf{4.} \ \ (\text{a}) \ \lim_{x \to \infty} g(x) = 2 & \qquad \qquad \text{(b)} \ \lim_{x \to -\infty} g(x) = -2 & \qquad \text{(c)} \ \lim_{x \to 3} g(x) = \infty \\ \\ \ \ (\text{d)} \ \lim_{x \to 0} g(x) = -\infty & \qquad \text{(e)} \ \lim_{x \to -2^+} g(x) = -\infty & \qquad \text{(f) Vertical: } x = -2, x = 0, x = 3; \text{ Horizontal: } y = -2, y = 2 \\ \\ \ \ \ \end{array}$$

7.
$$\lim_{x \to 2} f(x) = -\infty$$
, $\lim_{x \to \infty} f(x) = \infty$,

$$\lim_{x \to -\infty} f(x) = 0, \quad \lim_{x \to 0^+} f(x) = \infty,$$

$$\lim_{x \to 0^-} f(x) = -\infty$$



12. (a)
$$f(x) = 1/(x^3 - 1)$$

x	f(x)
0.5	-1.14
0.9	-3.69
0.99	-33.7
0.999	-333.7
0.9999	-3333.7
0.99999	-33,333.7

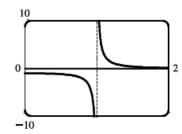
x	f(x)
1.5	0.42
1.1	3.02
1.01	33.0
1.001	333.0
1.0001	3333.0
1.00001	33,333.3

From these calculations, it seems that $\lim_{x\to 1^-} f(x) = -\infty$ and $\lim_{x\to 1^+} f(x) = \infty$.

(b) If x is slightly smaller than 1, then $x^3 - 1$ will be a negative number close to 0, and the reciprocal of $x^3 - 1$, that is, f(x), will be a negative number with large absolute value. So $\lim_{x\to 1^-} f(x) = -\infty$.

If x is slightly larger than 1, then $x^3 - 1$ will be a small positive number, and its reciprocal, f(x), will be a large positive number. So $\lim_{x \to 1^+} f(x) = \infty$.

(c) It appears from the graph of f that $\lim_{x\to 1^-} f(x) = -\infty$ and $\lim_{x\to 1^+} f(x) = \infty$.



Section 2.5 Homework

- **14.** (a) From a graph of $f(x) = (1 2/x)^x$ in a window of [0, 10,000] by [0, 0.2], we estimate that $\lim_{x \to \infty} f(x) = 0.14$ (to two decimal places.)

From the table, we estimate that $\lim_{x\to\infty}f(x)=0.1353$ (to four decimal places.)

- 16. $\lim_{x\to 5^-} \frac{e^x}{(x-5)^3} = -\infty$ since the numerator is positive and the denominator approaches 0 from the negative side as $x\to 5^-$.
- 17. $\lim_{x\to 1} \frac{2-x}{(x-1)^2} = \infty$ since the numerator is positive and the denominator approaches 0 through positive values as $x\to 1$.
- 18. $\lim_{x\to\pi^-} \cot x = \lim_{x\to\pi^-} \frac{\cos x}{\sin x} = -\infty$ since the numerator is negative and the denominator approaches 0 through positive values as $x\to\pi^-$.
- **19.** Let $t = x^2 9$. Then as $x \to 3^+$, $t \to 0^+$, and $\lim_{x \to 3^+} \ln(x^2 9) = \lim_{t \to 0^+} \ln t = -\infty$ by (3).