15. $f(x) = \begin{cases} e^x & \text{if } x < 0 \\ x^2 & \text{if } x \ge 0 \end{cases}$

The left-hand limit of f at a = 0 is $\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} e^x = 1$. The right-hand limit of f at a = 0 is $\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} x^2 = 0$. Since these limits are not equal, $\lim_{x \to 0} f(x)$ does not exist and f is discontinuous at 0.

21. By Theorem 5, the polynomial t⁴ - 1 is continuous on (-∞, ∞). By Theorem 7, ln x is continuous on its domain, (0, ∞). By Theorem 9, ln(t⁴ - 1) is continuous on its domain, which is {t | t⁴ - 1 > 0} = {t | t⁴ > 1} = {t | |t| > 1} = (-∞, -1) ∪ (1, ∞).

31. $f(x) = \begin{cases} x+2 & \text{if } x < 0\\ e^x & \text{if } 0 \le x \le 1\\ 2-x & \text{if } x > 1 \end{cases}$

f is continuous on $(-\infty,\mathbf{0})$ and $(1,\infty)$ since on each of these intervals it is a

polynomial; it is continuous on (0, 1) since it is an exponential.

Now $\lim_{x\to 0^-} f(x) = \lim_{x\to 0^-} (x+2) = 2$ and $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} e^x = 1$, so f is discontinuous at 0. Since f(0) = 1, f is continuous from the right at 0. Also $\lim_{x\to 1^-} f(x) = \lim_{x\to 1^-} e^x = e$ and $\lim_{x\to 1^+} f(x) = \lim_{x\to 1^+} (2-x) = 1$, so f is discontinuous at 1. Since f(1) = e, f is continuous from the left at 1.

33.
$$f(x) = \begin{cases} cx^2 + 2x & \text{if } x < 2\\ x^3 - cx & \text{if } x \ge 2 \end{cases}$$

f is continuous on $(-\infty, 2)$ and $(2, \infty)$. Now $\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} (cx^2 + 2x) = 4c + 4$ and

 $\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} (x^3 - cx) = 8 - 2c. \text{ So } f \text{ is continuous } \Leftrightarrow 4c + 4 = 8 - 2c \Leftrightarrow 6c = 4 \Leftrightarrow c = \frac{2}{3}. \text{ Thus, for } f \text{ to be continuous on } (-\infty, \infty), c = \frac{2}{3}.$

37. $f(x) = x^4 + x - 3$ is continuous on the interval [1, 2], f(1) = -1, and f(2) = 15. Since -1 < 0 < 15, there is a number c in (1, 2) such that f(c) = 0 by the Intermediate Value Theorem. Thus, there is a root of the equation $x^4 + x - 3 = 0$ in the interval (1, 2).