15. $f(x)= \begin{cases}e^{x} & \text { if } x<0 \\ x^{2} & \text { if } x \geq 0\end{cases}$

The left-hand limit of f at $a=0$ is $\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} e^{x}=1$. The right-hand limit of f at $a=0$ is $\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} x^{2}=0$. Since these limits are not equal, $\lim _{x \rightarrow 0} f(x)$ does not exist and f is discontinuous at 0 .

21. By Theorem 5 , the polynomial $t^{4}-1$ is continuous on $(-\infty, \infty)$. By Theorem $7, \ln x$ is continuous on its domain, $(0, \infty)$. By Theorem $9, \ln \left(t^{4}-1\right)$ is continuous on its domain, which is
$\left\{t \mid t^{4}-1>0\right\}=\left\{t \mid t^{4}>1\right\}=\{t| | t \mid>1\}=(-\infty,-1) \cup(1, \infty)$.
31. $f(x)= \begin{cases}x+2 & \text { if } x<0 \\ e^{x} & \text { if } 0 \leq x \leq 1 \\ 2-x & \text { if } x>1\end{cases}$
f is continuous on $(-\infty, 0)$ and $(1, \infty)$ since on each of these intervals it is a polynomial; it is continuous on $(0,1)$ since it is an exponential.

Now $\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}}(x+2)=2$ and $\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} e^{x}=1$, so f is discontinuous at 0 . Since $f(0)=1, f$ is continuous from the right at 0 . Also $\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} e^{x}=e$ and $\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}(2-x)=1$, so f is discontinuous at 1 . Since $f(1)=e, f$ is continuous from the left at 1 .
33. $f(x)= \begin{cases}c x^{2}+2 x & \text { if } x<2 \\ x^{3}-c x & \text { if } x \geq 2\end{cases}$
f is continuous on $(-\infty, 2)$ and $(2, \infty)$. Now $\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}}\left(c x^{2}+2 x\right)=4 c+4$ and
$\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}}\left(x^{3}-c x\right)=8-2 c$. So f is continuous $\Leftrightarrow 4 c+4=8-2 c \Leftrightarrow 6 c=4 \Leftrightarrow c=\frac{2}{3}$. Thus, for f to be continuous on $(-\infty, \infty), c=\frac{2}{3}$.
37. $f(x)=x^{4}+x-3$ is continuous on the interval $[1,2], f(1)=-1$, and $f(2)=15$. Since $-1<0<15$, there is a number c in $(1,2)$ such that $f(c)=0$ by the Intermediate Value Theorem. Thus, there is a root of the equation $x^{4}+x-3=0$ in the interval (1,2).

