1. From Definition $1, \lim _{x \rightarrow 4} f(x)=f(4)$.
2. (a) The following are the numbers at which f is discontinuous and the type of discontinuity at that number: -4 (removable), -2 (jump), 2 (jump), 4 (infinite).
(b) f is continuous from the left at -2 since $\lim _{x \rightarrow-2^{-}} f(x)=f(-2) . f$ is continuous from the right at 2 and 4 since $\lim _{x \rightarrow 2^{+}} f(x)=f(2)$ and $\lim _{x \rightarrow 4^{+}} f(x)=f(4)$. It is continuous from neither side at -4 since $f(-4)$ is undefined.
3. The graph of $y=f(x)$ must have a discontinuity at $x=3$
and must show that $\lim _{x \rightarrow 3^{-}} f(x)=f(3)$.

4. (a)

(b) There are discontinuities at times $t=1,2,3$, and 4. A person parking in the lot would want to keep in mind that the charge will jump at the beginning of each hour.
5. Since f and g are continuous functions,

$$
\begin{array}{rlrl}
\lim _{x \rightarrow 3}[2 f(x)-g(x)] & =2 \lim _{x \rightarrow 3} f(x)-\lim _{x \rightarrow 3} g(x) & & \text { [by Limit Laws 2 and 3] } \\
& =2 f(3)-g(3) & & \text { [by continuity of } f \text { and } g \text { at } x=3 \text {] } \\
& =2 \cdot 5-g(3)=10-g(3) &
\end{array}
$$

Since it is given that $\lim _{x \rightarrow 3}[2 f(x)-g(x)]=4$, we have $10-g(3)=4$, so $g(3)=6$.
13. $f(x)=\ln |x-2|$ is discontinuous at 2 since $f(2)=\ln 0$ is not defined.

18. By Theorem 7, the trigonometric function $\sin x$ and the polynomial function $x+1$ are continuous on \mathbb{R}. By part 5 of Theorem $4, h(x)=\frac{\sin x}{x+1}$ is continuous on its domain, $\{x \mid x \neq-1\}$.
23. The function $y=\frac{1}{1+e^{1 / x}}$ is discontinuous at $x=0$ because the left- and right-hand limits at $x=0$ are different.

Page 2

