Sec. 2.3 In Class Problems

- 2. (a) $\lim_{x \to 2} [f(x) + g(x)] = \lim_{x \to 2} f(x) + \lim_{x \to 2} g(x) = 2 + 0 = 2$
 - (b) $\lim_{x\to a} g(x)$ does not exist since its left- and right-hand limits are not equal, so the given limit does not exist.
 - (c) $\lim_{x \to 0} [f(x)g(x)] = \lim_{x \to 0} f(x) \cdot \lim_{x \to 0} g(x) = 0 \cdot 1.3 = 0$
 - (d) Since $\lim_{x\to -1} g(x) = 0$ and g is in the denominator, but $\lim_{x\to -1} f(x) = -1 \neq 0$, the given limit does not exist.
 - (e) $\lim_{x \to 2} x^3 f(x) = \left[\lim_{x \to 2} x^3 \right] \left[\lim_{x \to 2} f(x) \right] = 2^3 \cdot 2 = 16$
 - (f) $\lim_{x \to 1} \sqrt{3 + f(x)} = \sqrt{3 + \lim_{x \to 1} f(x)} = \sqrt{3 + 1} = 2$
- 3. $\lim_{x \to -2} (3x^4 + 2x^2 x + 1) = \lim_{x \to -2} 3x^4 + \lim_{x \to -2} 2x^2 \lim_{x \to -2} x + \lim_{x \to -2} 1$ [Limit Laws 1 and 2] $= 3 \lim_{x \to -2} x^4 + 2 \lim_{x \to -2} x^2 - \lim_{x \to -2} x + \lim_{x \to -2} 1$ [3] $= 3(-2)^4 + 2(-2)^2 - (-2) + (1)$ [9, 8, and 7] = 48 + 8 + 2 + 1 = 59

6.
$$\lim_{u \to -2} \sqrt{u^4 + 3u + 6} = \sqrt{\lim_{u \to -2} (u^4 + 3u + 6)}$$
 [11]

$$= \sqrt{\lim_{u \to -2} u^4 + 3 \lim_{u \to -2} u + \lim_{u \to -2} 6}$$
 [1, 2, and 3]

$$= \sqrt{(-2)^4 + 3(-2) + 6}$$
 [9, 8, and 7]

$$= \sqrt{16 - 6 + 6} = \sqrt{16} = 4$$

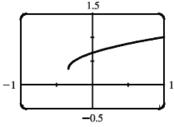
- 8. (a) The left-hand side of the equation is not defined for x=2, but the right-hand side is.
 - (b) Since the equation holds for all $x \neq 2$, it follows that both sides of the equation approach the same limit as $x \to 2$, just as in Example 3. Remember that in finding $\lim_{x\to a} f(x)$, we never consider x=a.

13.
$$\lim_{t \to -3} \frac{t^2 - 9}{2t^2 + 7t + 3} = \lim_{t \to -3} \frac{(t+3)(t-3)}{(2t+1)(t+3)} = \lim_{t \to -3} \frac{t-3}{2t+1} = \frac{-3-3}{2(-3)+1} = \frac{-6}{-5} = \frac{6}{5}$$

17. By the formula for the sum of cubes, we have

$$\lim_{x \to -2} \frac{x+2}{x^3+8} = \lim_{x \to -2} \frac{x+2}{(x+2)(x^2-2x+4)} = \lim_{x \to -2} \frac{1}{x^2-2x+4} = \frac{1}{4+4+4} = \frac{1}{12}.$$

23. (a)



$$\lim_{x\to 0}\frac{x}{\sqrt{1+3x}-1}\approx \frac{2}{3}$$

(b)

x	f(x)
-0.001	0.6661663
-0.0001	0.6666167
-0.00001	0.6666617
-0.000001	0.6666662
0.000001	0.6666672
0.00001	0.6666717
0.0001	0.6667167
0.001	0.6671663

The limit appears to be $\frac{2}{3}$.

(c)
$$\lim_{x \to 0} \left(\frac{x}{\sqrt{1+3x}-1} \cdot \frac{\sqrt{1+3x}+1}{\sqrt{1+3x}+1} \right) = \lim_{x \to 0} \frac{x\left(\sqrt{1+3x}+1\right)}{(1+3x)-1} = \lim_{x \to 0} \frac{x\left(\sqrt{1+3x}+1\right)}{3x}$$

$$= \frac{1}{3} \lim_{x \to 0} \left(\sqrt{1+3x}+1\right) \qquad \text{[Limit Law 3]}$$

$$= \frac{1}{3} \left[\sqrt{\lim_{x \to 0} (1+3x)} + \lim_{x \to 0} 1 \right] \qquad \text{[1 and 11]}$$

$$= \frac{1}{3} \left(\sqrt{\lim_{x \to 0} 1+3\lim_{x \to 0} x} + 1 \right) \qquad \text{[1, 3, and 7]}$$

$$= \frac{1}{3} \left(\sqrt{1+3\cdot 0} + 1 \right) \qquad \text{[7 and 8]}$$

$$= \frac{1}{3} (1+1) = \frac{2}{3}$$