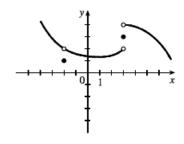

Sec. 2.2 In Class Problems


- 5. (a) $\lim_{t\to 0^-} g(t) = -1$ (b) $\lim_{t\to 0^+} g(t) = -2$
 - (c) $\lim_{t\to 0} g(t)$ does not exist because the limits in part (a) and part (b) are not equal.
 - (d) $\lim_{t \to 2^{-}} g(t) = 2$ (e) $\lim_{t \to 2^{+}} g(t) = 0$
 - (f) $\lim_{t\to 2} g(t)$ does not exist because the limits in part (d) and part (e) are not equal.

(g)
$$g(2) = 1$$
 (h) $\lim_{t \to 4} g(t) = 3$

(b) lim_{x→0+} f(x) = 0
(c) lim_{x→0} f(x) does not exist because the limits in part (a) and part (b) are not equal.

11.
$$\lim_{x \to 3^+} f(x) = 4$$
, $\lim_{x \to 3^-} f(x) = 2$, $\lim_{x \to -2} f(x) = 2$,
 $f(3) = 3$, $f(-2) = 1$

14. For
$$f(x) = \frac{x^2 - 2x}{x^2 - x - 2}$$
:

x	f(x)	x	f(x)
0	0	$^{-2}$	2
-0.5	-1	-1.5	3
-0.9	-9	-1.1	11
-0.95	-19	-1.01	101
-0.99	-99	-1.001	1001
-0.999	-999		

It appears that $\lim_{x \to -1} \frac{x^2 - 2x}{x^2 - x - 2}$ does not exist since

$$f(x) \to \infty$$
 as $x \to -1^-$ and $f(x) \to -\infty$ as $x \to -1^+$.

15. For
$$f(x) = \frac{e^x - 1 - x}{x^2}$$
:

It appears that
$$\lim_{x \to 0} \frac{e^x - 1 - x}{x^2} = 0.5 = \frac{1}{2}$$
.

17. For
$$f(x) = \frac{\sqrt{x+4}-2}{x}$$
:

$$\begin{array}{c|c}
x & f(x) \\
\hline 1 & 0.236068 \\
0.5 & 0.242641 \\
0.1 & 0.248457 \\
0.05 & 0.249224 \\
0.01 & 0.249844 \\
\hline \end{array} \begin{array}{c|c}
x & f(x) \\
-1 & 0.267949 \\
-0.5 & 0.258343 \\
-0.1 & 0.251582 \\
-0.05 & 0.250786 \\
-0.01 & 0.250156 \\
\hline \end{array}$$

It appears that
$$\lim_{x \to 0} \frac{\sqrt{x+4}-2}{x} = 0.25 = \frac{1}{4}$$
.